Technical notes on Radeon HD, straight from AMD engineers. I am mostly documenting this to avoid the bus factor... '''Radeon HD mode setting:''' {{{ There are two basic parts we generally work with when programming the display hardware, the crtc and the encoder. The crtc is basically a display controller and covers the display fb offset, the timing, and the pll setup. The encoder is the part that takes the bit stream from the crtc and formats it for the proper electrical signal for the connected monitor (TMDS, LVDS, DAC, DP, etc.). It's probably easiest to look at the ATOM tables using AtomDis (more on this below) and follow the same pattern in your driver. Follow atombios_crtc_mode_set() and radeon_atom_encoder_mode_set() in the drm. Basically the modeset sequence looks like: Disable encoder (dpms off) Disable crtc (dpms off) Set up the crtc to encoder routing Program the pll Program spread spectrum if applicable Program mode timing Program the crtc base address Program the overscan registers Program the scaler Program the encoder Enable the crtc (dpms on) Enable the encoder (dpms on) Note that the pll provides the pixclock for the crtc and the link clocks for the encoders, so it needs to be programmed for all displays. For displayport on evergreen and newer asics, multiple displays can be driven by the same pll due to the way DP clocking works. }}} '''Radeon HD chipset families:''' {{{ All of these chips have different display hardware so ATOM is your best bet to minimize the changes required to support each generation. The Display blocks families look like: Radeon - r1xx-r4xx AVIVO/DCE 1.0 - r5xx DCE2.0 - R600, RV610, RV630, RV670, RS690, RS740 DCE3.0 - RV620, RV635, RV770, RS780, RS880 DCE3.2 - RV710, RV730, RV740 DCE4.0 - evergreen (HEMLOCK, JUNIPER, CYPRESS, REDWOOD, CEDAR) DCE4.1 - fusion (SUMO, SUMO2, PALM) DCE5.0 - northern islands (BARTS, TURKS, CAICOS, CAYMAN) Each family programs slightly or some cases, majorly differently than others. }}}